

POLAC ECONOMIC REVIEW (PER) DEPARTMENT OF ECONOMICS NIGERIA POLICE ACADEMY, WUDIL-KANO

EMERGENCY MANAGEMENT AND DISASTER RESPONSE AND THE PERFORMANCE OF AKWA IBOM STATE FIRE SERVICE, NIGERIA

Ededem Asuakak Edem Department of Business Management, University of Uyo, Uyo,

Akwa Ibom State

Nse Sunday Ubeh Department of Business Management, University of Uyo, Uyo,

Akwa Ibom State

Edet Elijah Essiet Department of Business Management, University of Uyo, Uyo,

Akwa Ibom State

Abstract

The study examined emergency management and disaster response and the performance of Akwa Ibom State Fire Service, Nigeria. The objectives of the study were to investigate the effect of response time and resource availability on Performance of Akwa Ibom Fire Service, Nigeria. A survey research design was adopted for the study, with a sample of 128 respondents which was drawn from the population of 188 employees in the Akwa Ibom State Fire Service, Nigeria. The data collected were analysed using mean and standard deviation while a simple regression model was used in the testing hypothesis. The findings demonstrates that there is statistically significant effect of response time on the performance of Akwa Ibom State Fire Service, Nigeria Also, resource availability showed statistically significant effect on the performance of Akwa Ibom State Fire Service, Nigeria Hence, we conclude that emergency management and disaster response have statistically significant effect on the performance of a paramilitary organisation such as Akwa Ibom State Fire Service. We recommend that enhancing response time through optimal firefighting unit and staff deployment is essential to improving the Akwa Ibom State Fire Service's performance. Also, ensuring regular availability and upkeep of vital resources, such as fire vehicles, equipment, protective clothing, and water sources, is crucial to improving the performance of the organization.

Key words: Emergency Management and disaster response, Response Time, Resource Availability, Public Education and Preventative Programs, and Performance.

1. Introduction

Emergency management and disaster response are critical components of public safety, particularly in areas vulnerable to numerous threats such as fire, flood, and industrial accident. Disaster management in Nigeria is a shared duty of the federal, state, and local governments, with numerous organizations and agencies playing important roles during the response and recovery phases. The fire service is a critical component of state emergency management, preventing and managing responsible for performing rescue operations, providing first-responder services during disaster. Akwa Ibom is known for its rapid urbanization, rising industrial sector, and growing population. These

conditions all contribute to the likelihood of disaster, particularly urban fire, accident on congested highways, and flooding during the rainy season. Given these concerns, the Akwa Ibom State Fire Service's duty has become critical in guaranteeing public safety, managing emergencies, and reducing disasters.

Nigerian emergency management has undergone several reforms since inception to enhance readiness, response effectiveness, and disaster recovery. Despite these initiatives, there are still issues with state-level fire services' capabilities. Sadiq (2012) and Ekong*et al.* (2024), asserts that although financing and organizational structure have improved since 1999, many fire stations, particularly those in Akwa Ibom

State, still face challenges related to a lack of staff, antiquated equipment, and limited resources.. These issues expose their ability to respond to disasters quickly and efficiently, raising questions about their effectiveness in emergencies. Inadequate finance is one of the major factors influencing the performance of Nigeria's fire service. Abubakar and Kathuria (2020) noted that fire organizations in Nigeria frequently operate under tight budgetary restrictions. The lack of funding impedes the acquisition of new firefighting equipment, personnel training, and the expansion of fire service infrastructure. As a result, response times to fire outbreaks and other emergencies are frequently delayed; leading to avoidable damage and loss of life (Kiranet al. 2020) Another difficulty for the Akwa Ibom State Fire Service is the lack of a systematic disaster management strategy. While the state has a disaster management agency, the integration between it and the fire service is frequently weak. Adefisoye and Arum (2021) contended that, some collaboration among government entities in flood management, insufficient institutional capacity hinder enhanced service delivery. Drabek and McEntire (2002) posited that coordination is frequently difficult but necessary for successful response operations.

Other crucial aspects that influence the organization's effectiveness include training and capacity building. While the state fire service provides basic firefighting training, emergency management necessitates specialized abilities beyond basic firefighting, spanning a wide range of disasters such as chemical spills, traffic accidents, and flooding (Wachira & Smith, 2013).

Furthermore, public education about fire prevention and disaster preparedness remains an important concern. Reinhardt and Chatsiou (2019) and Kim *et al.* (2020) highlighted the importance of education in disaster preparedness and risk reduction. Disaster education seeks to give individuals the knowledge and skills they need to adopt protective measures, respond effectively to catastrophes, and reduce susceptibility (Torani*et al.*, 2019).

Technological developments could greatly improve emergency response operations, especially in the aspect of early warning systems, communication, and disaster monitoring. Even while modern technology has the potential to improve readiness and response capabilities, the state Fire Service, like many other state agencies in Nigeria, has difficulty implementing integrating them into its operations. Opportunities for improvement are presented by technological breakthroughs. During humanitarian emergencies. information and communication technologies (ICTs) can increase productivity (Oni, 2020). Natural catastrophe prediction, response, and recovery can be facilitated by technologies like social media, IoT, and remote sensing (Krichen et al., 2023).

Political issues also have an impact on the State's public fire safety management performance. Political leadership has a big influence on resource allocation and economic development, which affects public services (Ekpoet al. ,2024). Effective fire safety management systems are essential, but several issues, including shifting administrative objectives and governmental leadership, can make it difficult to implement them. Different administrations may prioritize emergency management differently, which could result in varying degrees of support for the fire. Additionally, response time is equally a significant aspect of fire service efficacy, with faster responses associated with lower property losses and better safety outcomes (Halpern et al., 1979; Arnsbargeret al., 2019).

The performance of fire services has been continually improving due to operational efficiency and technological developments. Key Performance Indicators (KPIs) are essential for assessing performance in fire service organizations (Bakhrom, 2024). It is frequently assessed using matrics such as firefighter safety, successful training programs, response time, resource availability, public education, preventative initiatives, and incident resolution time. The study measures performance through public education and prevention initiatives, while emergency management and disaster response are evaluated based on resource availability and response time.

The essence of emergency management and disaster response are to limit the effects of emergencies and disasters, especially in the case of fire outbreaks. However, in Akwa Ibom State, the fire service's response to emergencies has been reported to

confront many obstacles, affecting its ability to save lives, protect property, and ensure prompt responses. These issues include limited equipment, insufficient training, inadequate financing, delayed responses, and a lack of cooperation among disaster management authorities.

Furthermore, the rising frequency and intensity of fire, which are often exacerbated by environmental and urbanization factors, puts further strain on the fire service's capability. As a result, there are considerable gaps in the fire service's effectiveness in managing emergencies, resulting in increased fatalities, property devastation, and a general loss of public trust in the fire service's ability to protect communities. Addressing these concerns is critical for increasing the overall effectiveness of fire service operations and fatalities resilience in Akwa Ibom State. Available literature highlights several studies conducted on emergency management and disaster response and performance of fire service organizations but to the best knowledge of the researcher, studies carried out using the dimensions of emergency management and disaster response such as response time and resource availability in one model to examine organizational performance and its implications seem rare in management literature. On the strength of these contending issues, this study was carried out to examine the effect of emergency management and disaster response on the performance of the Akwa Ibom State Fire Service.

The main objective of this study was to examine the effect of emergency management and disaster response on the performance of Akwa Ibom State Fire Service. The specific objectives were to:

- i. Investigate the effect of response time on the performance of Akwa Ibom State Fire Service.
- ii. Examine the influence of resource availability on Performance of Akwa Ibom State Fire Service. The following research questions become pertinent to the study:
 - i. How does response time affect the performance of Akwa Ibom State Fire Service?

ii. Can resource availability affect the Performance of Akwa Ibom State Fire Service?

To achieve the objectives, it was hypothesized thus:

- Response time has no significant effect on the performance of Akwa Ibom State Fire Service.
- There is no significant effect of resource availability on performance of AkwaIbom State Fire Service.

2. Literature Review

2.1 Conceptual Definitions

2.1.1. Emergency management and Disaster Response

Emergency management and disaster response have undergone tremendous evolution, with a focus on resilience and collaboration. Recent study focuses on the evolution of emergency management and disaster response, emphasising the need of coordination, readiness, and resilience. Effective communication and coordination among stakeholders, such as non-governmental government agencies, organisations, and communities, is critical for disaster management success (Muhammad Ardiansyahet al., 2024; Oh & Lee, 2020). The use of modern technology like artificial intelligence, drones, and geographic information systems has considerably enhanced catastrophe predicting, response, and recovery efforts (Shawe, 2023; Abid et al., 2023). Studies also highlight the move towards communitybased resilience and the importance of public awareness programs in cultivating a preparedness culture (Muhammad Ardiansyahet al., 2024). The shifting landscape of emergency management research displays a greater emphasis on mitigation, sustainability, and adaptability to new issues such as climate change (Oh & Lee, 2020). Moreover, the creation of intelligent emergency management systems that make use of AI methodologies and historical data improves decision-making and resource distribution in times of disaster (Shawe, 2023; Abidet al., 2023).

2.1.2 Response Time

Response time is a significant aspect in fire service efficacy, with faster responses associated with lower property losses and better safety outcomes (Halpern et al., 1979; Arnsbargeret al., 2019). Fire service strive to shorten response times through a variety of techniques, including the use of rapid intervention vehicles (RIVs), which have been proven to cut response times by an average of 53 seconds per call (Guldviket al., 2022). Turnout times, travel times, and geographical location are all factors that influence response times, with rural locations typically seeing longer response times than metropolitan areas (Arnsbargeret al., 2019; Hassleret al., 2023). Estimated response times, commonly planning employed for purposes, tend underestimate actual response times, particularly in urban municipalities and areas with formalised (Hassleret cooperation agreements al.. 2023)).Continuous review and enhancement of response time estimation methodologies is essential for efficient resource allocation and emergency service planning (Arnsbargeret al., 2019; Hassleret al., 2023).

2.1.3. Resource Availability

The availability of resources is essential to fire service organisations' operational efficacy and funds, efficiency. Sufficient manpower, and equipment have a direct impact on response times and the calibre of services rendered during emergencies. Delays in response times and decreased safety for firefighters and the communities they serve can result from a lack of resources. To improve firefighter involvement and safety, researchers recommend investing in safety-specific job resources, improved triage procedures, and focused resource utilisation (Cannuscioet al., 2015; Smith & Dyal, 2016; Averill et al., 2008). Investments in infrastructure, technology, and training are also necessary to guarantee that fire services can adjust to changing difficulties, including wildfires brought on by climate change (Oecd Environment Directorate. 2024: Nearvet 2019). Therefore, strategic planning and strong resource allocation are necessary for the efficient handling of fire-related situations. Mohanty & Mithal (2022), argued that managing fires in changing

climates requires more funding and an integrated strategy.

2.1.3 Performance

Performance of fire service organizations is increasingly improving as technology, training, and management tactics have advanced. Recent studies show that technical breakthroughs and management tactics lead to significant gains in fire service performance. Modernisation strategies, such as Integrated Personal Development Systems and Integrated Risk Management Plans, have resulted in improved performance in organization (Andrews 2010). AI-integrated fire alarm and detection systems have transformed fire safety, providing improved accuracy, early detection, and predictive analytics capabilities (Mohammad, 2023). However, obstacles persist, as illustrated by the impact of several disasters on routine emergency response performance. French et al., (2020), stress need for building dynamic resource capabilities, data-driven inquiry, focused responder training, and community participation to maintain effective routine incident operational performance during disaster.

2.1.4. Public Education and Preventative Programs

Public education and preventive initiative are critical for improving fire service effectiveness and ensuring community safety. Taylor et al. (2019) argue that successful fire prevention techniques considerably reduce fire incidences, emphasising the significance of focusing on vulnerable populations like the elderly. Clare et al. (2012) show that firefighter-led door-toeducation campaigns in high-risk neighbourhoods reduced the frequency and severity of home fires while improving smoke detector activation during occurrences. Frattaroliet al. (2011) urged for comprehensive fire and life safety education efforts, emphasising the fire service's role in public health and the importance of a coordinated prevention strategy. Furthermore, Reinhardt and Chatsiou (2019) found that community education programs resulted in a significant decrease in accidental dwelling fires, encouraging resilience

2.2. Theoretical Framework

The disaster lifecycle theory, often referred to as the disaster management cycle, offers a methodical framework for understanding the order in which a crisis occurs. Preparation, response, recovery, and mitigation are the four interrelated stages of the disaster management cycle (Klein & Irizarry, 2020). This paradigm directs emergency managers' planning efforts and aids researchers in organising findings (Neal, 1997). The strategy emphasises how critical it is to manage risks prior to a disaster and guarantee efficient response and recovery procedures following one. For more than 30 years, the effects of disasters have been explained and managed using this cycle (Coetzee & Niekerk, 2012). According to Upadhyayet al. (2020), the post-disaster phase entails response and recovery, whereas the pre-disaster phase concentrates on mitigation and preparedness.Both lean and agile principles are beneficial in each phase, although agility is more important in the reponse phase (Upadhyayet al., 2020). The cycle highlights how these phases are interdependent and how crucial it is to determine the best places to decouple lean and agile approaches (Upadhyayet al., 2020). Applying the disaster life cycle theory to emergency management provides important insights into planning and disaster management at all stages, from preparation and prevention to recovery and enhancing emergency preparedness.

2.3. Empirical Review

Ardiansyah, et al.(2024) investigated the impact of Disaster Management and Emergency Response: Improving Coordination and Preparedness. The study aimed to analyse current disaster management and emergency response methods with the goal of improving coordination and readiness. The study evaluated existing tactics and identifies areas for improvement using qualitative analysis. Findings indicated a significance effective of coordination among disaster management stakeholders, including government agencies, non-governmental organisations, and community groups. The study also emphasized the importance of preparedness measures in reducing the impact of disasters and supporting quick response operations

Otun (2023) conducted a study on the analysis of fire station location and road condition on service response time in Ogun West Senatorial District, Ogun State, Nigeria. The study's objective was to investigate the ideal location and the impact of road conditions on fire service response time in Nigeria's Ogun West Senatorial District. The data for the L-A models are based on the coordinates of the 509 communities and four fire stations, as well as the road network in the study area. The study found out that optimizing fire station sites and maintaining adequate road conditions can cut response time by 61.62% from 18.97 minutes to 11.69 minutes.

Oruonyeet al.(2021) examined the challenges of emergency management and response in Nigeria: a case study of FCT Emergency Management Agency (FEMA), FCT Nigeria. The study evaluated the type and pattern of emergencies and disasterthat frequently occur in the Federal Capital Territory (FCT), assessed how well FEMA responds to emergencies in the FCT, and identifies the difficulties faced by the FCT's Federal Environmental Management Agency. Data was gathered using both primary and secondary sources. Data analysis was done using descriptive statistics. The findings showed that, among other things that flooding and traffic accidents are the most common in the region.

Olasunkanmi (2019) conducted a spatial analysis of disaster statistics in selected Nigerian cities. The study examined disasters in Lagos, Port Harcourt, and Kaduna, Nigeria. Data was obtained using questionnaire and in-depth interview with disaster stakeholders, including local communities' leaders, NEMA workers, and victims, in disaster-prone areas chosen. Finding revealed that fire, flood, building collapses, and windstorms posed significant hazards to life and property in Lagos, Port Harcourt, and Kaduna, Nigeria.

3. Methodology

3.1 Research Design

This study used a survey research design. The population of the study consisted of 188 employees from Akwa Ibom Fire Service, drawn from the nominal rolls of the organization's 35 fire stations. Also, the unit of analysis included all of the

organization's employees. The sample size of the study was 128 and was determined using Taro Yamane formula for sample size determination. This study used simple random sampling techniques. The proportionate sampling method was used to determine the number of questionnaire administered per fire station.

3.2 Data and Sources

The data were collected from 35 fire stations in Akwa Ibom State using questionnaire which was designed to align with the independent and dependent variables. It was also graded on a modified 4-point scale, ranging from strongly agree (SA)-4, agree (A)-3, Disagree (D)-2, and Strongly Disagree (SA)-1.

3.3 Model Specification

The following models were formulated to test the null hypotheses formulated for the study. The models stated that response time and resource availability are the function of Performance measured by education and preventive initiatives in Akwa Ibom Fire Service and stated as:

Hypothesis 1 and 2

$$P=f(RT) \tag{1}$$

$$P = f(RA) \tag{2}$$

$$P = X_0 + X_1 R T_1 + e$$
 (3)

$$P = X_0 + X_1 RA_1 + e$$
 (4)

Where:

P= Performance

 $X_0 = Intercept or constant$

RT = Response Time

RA = Resource Availability

 X_{\perp} = Coefficient of the independent variable

e = Error term

3.4 Method of Data Analysis

The data collected were analyzed using both descriptive statistics and regression analyses. The descriptive statistics adopted was mean and standard deviation while simple linear regression was used to test the null hypotheses formulated for the study.

4. Results and Discussion

4.1 Descriptive Statistics of Questionnaire

The data collected indicated that out of 128 copies of questionnaire administered, 121 were correctly filled and returned in usage form which forms the basis for this analysis.

Table 1: Descriptive Statistics of Questionnaire

Descriptive Statistics										
	N	Minimum	Maximum	Mean	Std. Deviation					
Response Time	121	1.00	4.00	1.9008	1.01164					
Resource Availability	121	1.00	4.00	1.9008	1.08324					
Performance	121	1.00	4.00	1.9091	1.23153					

Source: Researcher's Computation (2024)

Table 1 indicates the mean score of greater than 1, and minimum score of 1 and the maximum score of 4 respectively. This implies that the questionnaire was distributed and disperses clearly with skewness. The maximum score of 4 and standard deviation of

1.01164 further revealed that more average indicated that response time and resource availability were clearly measured.

4.2 Data Analysis

Table 2: The Simple Regression Analysis on the Effect of Response Time on Performance of Fire Service in Akwa Ibom State

	of the se	i vice iii	AKWA IDUM	Juic					
•			N	Iodel Sumi	mary	b			
				Adjusted	R	Std. Error o	f the		
	Model	R	R Square	Square		Estimate	e Di	Durbin-Watson	
	1	$.728^{a}$.531		.527	.84	4723	2.183	
			I	Model Fit					
Model		Sum	of Squares	Df	Mea	an Square	F	Sig	g.
1	Regression		96.582	1		96.582	134.55	52	$.000^{b}$
	Residual		85.418	119		.718			
	Total		182.000	120					
				Coefficier	nts ^a				
						Standardi	zed		
			Unstandardized Coefficients			Coefficie	nts		
Model			В	Std. En	or	Beta		T	Sig.
1	(Constant)		.223		.164			1.358	.177
	Response Ti	me	.887		.076		.728	11.600	.000

Table 2 shows the simple linear regression analysis on the effect of response time on performance of Akwa Ibom State Fire Service. The results reveal R²-value of .553, Beta coefficients of .887, T-value of 11.600, F-value of 134.552, Durbin Watson coefficients of 2.183, P-value of .000. This implies that 55.3 % change has been accounted for by response time in Akwa Ibom State Fire service. The result is supported by beta coefficients of .888 which reveals that to every 1 unit increase of response time, there is 88.8% increase in performance of AkwaIbom State fire service. Also, the T-value of 11.600 reveals the differences in the means which implies that the response time influence performance positively in state fire service. However, to evaluate the presence of autocorrelation, the Durbin Watson Statistic was

computed and result yield the coefficients of 2.183 which implies that there is absent of serial correlation in the model, meaning that the residuals are no conflicting and the independent variable acted independently to affect the performance of Fire service. Furthermore, the result shows F-value of 134.552, meaning that the model is fit to evaluate the interaction between response time and performance of AkwaIbom State fire Service. Therefore, since the P-value of .000 lies below the alpha value of 0.05 confident levels in social sciences, it can be affirmed that the null hypothesis which states that response time has no significant effect on performance of Akwa Ibom State fire service is rejected and the alternative accepted, meaning that response time significantly and positively affect performance of Akwa Ibom State Fire service.

Table 3: The Simple linear Regression Analysis on the effect of resource availability on performance of Akwa Ibom State Fire service.

Model Summary										
			Adju	sted R	Std. Error of the					
Model	R	R Square	Squ	uare	Estimate	Durbin-Watso	on			
1	.512 ^a	.262		.256	1.06255	1.9	67			
	Modefit									
Model		Sum of Squ	ares	Df	Mean Square	F	Sig.			
1	Regression	47	.646	1	47.646	42.202	$.000^{b}$			
	Residual	134	.354	119	1.129					
	Total	182	2.000	120						

		Co	oefficients ^a			
				Standardized		
		Unstandardized	l Coefficients	Coefficients		
Model		В	Std. Error	Beta	T	Sig.
1	(Constant)	.803	.196		4.105	.000
	ResourceAvailability	.582	.090	.512	6.496	.000

Source: Researcher's Computation (2024)

Table 3 shows the simple linear regression analysis on the effect of resource availability on performance of Akwa Ibom State Fire Service. The results reveal R²value of .262, Beta Coefficients of 5582, T-value of 6.496 F-value of 42.202, Durbin Watson coefficients of 1.962., P-value of .000. This implies that 26.2% % change has been accounted for by resource availability in Akwa Ibom State Fire service. The result is supported by beta coefficients of .582 which reveals that to every 1 unit increase of resource availability, there is 58.2% increase in performance of Akwa Ibom State fire service. Also, the T-value of 6.496 reveals the differences in the means which implies that the resource availability affect performance positively in state fire service. However, to evaluate the presence of autocorrelation, the Durbin Watson Statistic was computed and result yields the coefficients of 1.962 which implies that there is absent of serial correlation in the model, meaning that the residuals are no conflicting and the independent variable acted independently to affect the performance of Fire service. Furthermore, the result shows F-value of 42.202, meaning that the model is fit to evaluate the interaction between resource availability and performance of Akwa Ibom State fire Service. Therefore, since the Pvalue of .000 lies below the alpha value of 0.05% confident levels in social sciences, it can be concluded that the null hypothesis which states that resource availability has no significant effect on performance of fire service is rejected and the alternative accepted, meaning that resource availability significantly and positively affect performance of Akwa Ibom State Fire service.

4.4 Discussion of Finding

The finding of hypothesis one indicated that response time has significant effect on performance of Akwa Ibom State fire service. This shows that the interaction between response time and performance was positively correlated. This finding was in line with the work of Halpern et al., (1979) and Arnsbargeret al (2019) who maintained that response time is a significant aspect in fire service efficacy, with faster responses associated with lower property losses and better safety outcomes. Also, the finding of hypothesis two revealed that resource availability has significant effect on performance of Fire AkwaIbom State Fire Service. This showed that the result has predictive power to explain the link between resource availability and performance of AkwaIbom State fire service .The finding is in agreement the work of Cannuscioet al., 2015; Smith &Dyal, 2016; Averill et al., 2008) who postulated that the availability of resources is essential to fire service organisations' operational efficacy and efficiency. They suggested that sufficient funds, manpower, and equipment have a direct impact on response times and the nature of services rendered during emergencies.

5. Conclusion and Recommendations

The interaction between response time and resource availability showed a significant and positive effect on performance of Akwa Ibom State Fire Service. It can therefore be concluded that the dimensions of emergency management and disaster response significantly associated with the performance of Akwa Ibom State Fire service. Thus, it was recommended that:

i. enhancing response time through optimal firefighting unit and staff deployment is essential to improving the Akwa Ibom State Fire Service's performance. The state government ought to spend money on a dispatch and communication system that is more effective and includes automated response algorithms and real-time GPS tracking of fire trucks. It would also cut down on travel time during emergencies if fire stations were placed strategically in high-density regions that are susceptible to fire hazards.

ii. ensuring regular availability and upkeep of vital resources, such as fire vehicles, equipment, protective clothing, and water sources, is crucial to improving the Akwa Ibom State Fire Service's performance. Establishing dependable water supply systems at strategic areas and allocating consistent funds for the purchase of cutting-edge firefighting apparatus,

including fire hoses, rescue tools, and fire trucks, should be top priorities for the state government. The effectiveness of the fire service in reacting to and preventing fire accidents will also be increased by putting in place a preventive maintenance schedule for all firefighting apparatus and infrastructure.

References

- Abid, S.K,Chan S. W., Sulaiman, N., Bhatti U. & Umber N.(2023).Present and Future of Artificial Intelligence in Disaster Management.International Conference on Engineering Management of Communication and Technology (EMCTECH),1-7
- Adefisoye T.O. & Arum I.(2021). Inter-agency collaboration and the dilemma of flood management and policy implementation in Nigeria. *Ikenga Journal of African studies*, 22(3),1-26.
- Andrews R.(2010). The Impact of Modernisation on fire authority performance: an empirical evaluation. *Bristol University Press Digital*, 38(4), 599-617.
- Ardiansyah,M.,Mirandah,E.,Suyatno,A.,Saputra,F.,& Muazzinah,M.(2024).DisasterManagementand EmergencyResponse:ImprovingCoordinationa ndPreparedness. *Global International Journal of Innovative Research*, 2(4),832-839.
- Arnsbarger M., Goldstein J., Kelling C., Korkmaz G. & Keller S.(2019). Modeling Response Time to Structure Fires. *The American Statistician*, 75(1),1-19.
- Averill J. D., L.M.Merrell, K. Notarianni& G. Forney(2008).Multi-phase Study on Firefighter Safety and the Deployment of Resources.Fire Fighter Development Study.
- Bakhrom U.M.(2024). Key Performance Indicators In Service Organizations: Global Practices In Kpi Application. *International Journal of Advance Scientific Research* 4(1),52-62.
- Cannuscio C. C., Davis A.L., A. D. Kermis, Y. Khan, R. Dupuis & J. Taylor. A Strained 9-1-1 System and Threats to Public Health. *Journal of Community Health*, 41(3),658–666.

- Clare J.,Garis L.,Plecas D. & Jennings C. R.(2012).Reduced frequency and severity of residential fires following delivery of fire prevention education by on-duty fire fighters: Cluster randomized controlled study. *Journal of Safety Research* 43(2):123-8.
- Coetzee C. &Niekerk D.V.(2012).Tracking the evolution of the disaster management cycle: A general system theory approach. *Journal of Disaster Risk Studies*, 4(1),1-9.
- D.M.Neal(1997).Reconsidering the Phases of Disaster. *International Journal for mass Emergencies and Disaster*,15(2), 239 -264
- Drabek T.E. &McEntire(2002). Emergency Phenomena and Multi organizational Coordination in Disasters: Lessons from the Research Literature. *International Journal of* Mass Emergencies & Disasters 20(2),197-224.
- Ekong A. E.,Ogunbanwo B.M.,Okeke G. N and Esitikot E.L. (2024).Disaster Preparedness and Response Capacity to Incidents of Fire among Residential Buildings in Selected Areas in Lagos and Akwa-Ibom. Asian Journal of Advanced Research and Reports, 18(7),135-158.
- Ekpo M.E., Atakpa O. E. , Akpa O. and Umoh U. E. (2024). Political Leadership and Economic Development in AkwaIbom State, Nigeria. International Journal and Innovation in Social Science, 8(3), 2574-2589.
- Frattaroli S., Gielen A.C., Renna J.P., Pollack K.M & Ta V. M. (2011). Fire Prevention in Delaware: A Case Study of Fire and Life Safety Initiatives. *Journal of Public Health Management and Practice*, (17)6, 492-498.
- French M., Duray R. and Fan Y.(2020).Impact of disasters on routine emergency service response performance. Journal of Contingencies and Crisis Management, 29(3), 303-320.

- Guldvik M.K., Helseth A, Grimsby G.(2022). Rapid intervention vehicles' impact on fire departments' response time. *International Journal of Emergency Services*, 12(1),29-37.
- Halpern J., Isherwood G. &Wand Y.(1979)The Relationship Between Response Time And Fire Property Losses.INFOR: Information Systems and Operational Research,(17)4,373-389
- Hassler J., Granberg T. A., & Ceccato V. (2023). Sociospatial Inequities of Fire and Rescue Services in Sweden: An Analysis of Real and Estimated Response Times. Fire Technology 60(11), 1-21.
- Hayes P. A.J., Bearman C., Butler P. and Owen C.(2020). Non-technical skills for emergency incident management teams: A literature review. *Journal of Contingencies and Crisis Management*, 29(1).
- Kim S. Y., Choi S., Kim J and Cai L.(2020). Policy for Promoting Safety Education Designed to Create Safe Society: Focusing on Fire Safety Educator. Journal of Safety and Crisis Management,
- Kitchen M., Abdalzaher M.S., Elwekeil M. and Fouda M.M.(2023).Managing natural disasters: An analysis of technological advancements, opportunities, and challenges. Internet of Things and Cyber-Physical Systems,4(4),99-109.
- Klein TA, Irizarry L.(2020). EMS Disaster Response.StatPearls Publishing LLC.
- Mohammad Hanif(2023). AI-Driven Transformation in Fire Safety: A Comprehensive Study on AI - Integrated Fire Alarm and Detection Systems, 12(8), 125-126
- Mohanty A. &Mithal v.(2022).Managing Forest Fires in a Changing Climate. *Journal Council on Energy, Environment and Water:* New Delhi, India,1-32.
- Neary, D. G., Leonard, J. M., Rhodes, E. R., &Naser, H. (2019). Physical vulnerabilities from wildfires: Flames, floods, and debris flows. Natural Resources Management and Biological Sciences, 59.Retrived from https://doi.org/10.5772/intechopen.87203.
- OECD (2024), "Taming wildfires in the context of climate change: The case of the United States",

- OECD Environment Policy Papers, No. 40, OECD Publishing, Paris.Retrieved from https://doi.org/10.1787/ef69cc94-en.
- Oni, O. (2020). Challenges and opportunities of adopting ICTs in the humanitarian sector in Nigeria. Information and Communication Technologies for Humanitarian Services, 21,311–331.
- Reinhardt G. Y. and Chatsiou K.(2019). Community education interventions to build resilience and avert crises: how accidental dwelling fires decreased in Essex County, UK. Local Government Studies, 45(1),1-19.
- Shawe, R. (2023).Communication, Leadership, and Organizational Skills in Emergency Response.*Open Journal of Business and Management*, 11(06), 2868-2874.
- Taylor A.,Appleton D.,Keen G. & Fielding J.(2019).Assessing the effectiveness of fire prevention strategies. *Public Money & Management*, 39(80),1-10.
- Todd D. Smith &Dyal M.A.(2016). A conceptual safety-oriented job demands and resources model for the fire service. *International Journal of Workplace Health Management*, 9(4), 443-460.
- Torani S., Majd P. M., Maroufi S.S., Dowlati and Sheikhi R. A.(2019). The importance of education on disasters and emergencies: A review. *Journal of Education and Health Promotion* 8(1),1-7
- Upadhyay A.,Mukhuty S.,Kumari S.,Reyes J.A.G. &Shukla V.(2020).A Review of Lean and Agile Management in Humanitarian Supply Chains: Analysing the Pre-Disaster and Post-Disaster Phases, and Future Directions. Production Planning & Control, 33, 6-7.
- Wachira B. W & Smith W. P. (2013). Major Incidents in Kenya: the Case for Emergency Services Development and Training. Prehospital and disaster medicine: the official journal of the National Association of EMS Physicians and the World Association for Emergency and Disaster Medicine in association with the Acute Care Foundation, 28(2), 1-4.