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Abstract 

The study provides a rigorous theoretical exploration of the Hamilton-Jacobi-Bellman (HJB) equation and its 

foundations in financial optimization. The HJB equation serves as a cornerstone in optimizing sequential decision-

making under uncertainty. The study discusses the adaptation of the classical Hamilton-Jacobi equation from 

mechanics to finance, establishing the theoretical framework for applying dynamic programming in financial 

contexts. A comprehensive perspective on financial optimization as a mathematical discipline is presented, 

emphasizing the role of uncertainty and system dynamics. The integration of stochastic control theory is delineated, 

underscoring the elegance of adapting control concepts. The theoretical derivation and practical implications of the 

HJB equation are explicated in detail. The nonlinearities and challenges inherent in solving the HJB equation are 

also discussed.  

Keywords: Hamilton-Jacobi-Bellman equation, dynamic programming, stochastic control, financial optimization, 

nonlinear partial differential equations, viscosity solutions 

 

Introduction 

Dynamic programming, a mathematical optimization 

technique, has found profound applications in the field 

of finance, particularly in addressing complex 

sequential decision problems. This section provides an 

overview of dynamic programming principles, 

emphasizing its relevance in financial optimization. The 

theoretical foundation of dynamic programming 

involves recursive decision-making processes, which 

play a pivotal role in navigating sequential financial 

challenges. Additionally, a theoretical framework for 

financial optimization is presented, laying the 

groundwork for the subsequent exploration of the 

Hamilton-Jacobi-Bellman (HJB) equation. 
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Dynamic programming principles involve breaking 

down a complex problem into simpler subproblems and 

solving them systematically. The application of 

dynamic programming in finance allows for the 

optimization of decision-making processes over time, 

aligning with the dynamic and uncertain nature of 

financial markets (Bellman, 1957). 

In the realm of sequential financial problems, recursive 

decision-making becomes paramount. The ability to 

make optimal decisions at each step, considering the 

future implications of current choices, is a fundamental 

aspect of dynamic programming. This recursive nature 

aligns with the dynamic nature of financial markets, 

where decisions made today can significantly impact 

future outcomes (Dixit & Pindyck, 1994). 

The theoretical framework for financial optimization 

serves as the backbone for applying dynamic 

programming to real-world financial scenarios. The 

framework involves formulating optimization problems 

that capture the essence of decision-making under 

uncertainty and dynamic market conditions. This 

theoretical underpinning sets the stage for introducing 

the Hamilton-Jacobi-Bellman equation, a powerful tool 

rooted in dynamic programming that provides a 

mathematical framework for optimizing financial 

decisions. 

In summary, this introduction sets the stage for a 

comprehensive exploration of dynamic programming in 

finance, emphasizing its principles, recursive decision-

making in sequential financial problems, and the 

theoretical framework that lays the groundwork for the 

subsequent discussion on the Hamilton-Jacobi-Bellman 

equation. 

Adaptation of Hamilton-Jacobi Equation to Finance 

Classical Hamilton-Jacobi Equation in Mechanics 

The Classical Hamilton-Jacobi Equation is a profound 

expression in mechanics that unveils the dynamics of a 

system through the lens of action principles (Hamilton, 

1834; Jacobi, 1837). Rooted in the works of Hamilton 

and Jacobi, this equation provides a sophisticated 

alternative to Newton's equations of motion, offering 

deeper insights into the evolution of dynamic systems. 

Consider a system described by generalized coordinates 

evolving over time t. The Hamiltonian, representing the 

total energy of the system, is a function of coordinate’s 

q and momenta p: 

(𝑞, 𝑝,𝑡) = 
 

  
 (𝑝 − (𝑞,) 2 + (𝑞,𝑡) 

Where m is the mass of the particle, 𝐴(𝑞,𝑡) is a vector 

potential, and 𝑉(𝑞,𝑡) is the potential energy. 

To derive the Hamilton-Jacobi equation, we start with 

the action integral S, defined as: 

 𝑆[𝑞(𝑡),𝑡] = ∫∫  
  

  
 (𝑞(𝑡), 𝑞˙(𝑡),𝑡)𝑑𝑡,  

Where L is the Lagrangian of the system, given by y 

 (𝑞, 𝑞˙,𝑡) = 
 

 
 𝑚𝑞 2 − 𝐴(𝑞,𝑡)𝑞˙ − 𝑉(𝑞,𝑡). The action 

represents the difference between kinetic and potential 

energies integrated over time. 

Applying the Hamilton's Principal Function, denoted as 

S, as a generating function, we introduce canonical 

transformations to new coordinates αi and βi conjugate 

to qi and αi, respectively. The transformations yield: 

. 𝑝𝑖 = 
  

   
  , 𝛽𝑖 = 

   

   
 

With these transformations, the Hamilton-Jacobi 

equation takes the form: 

𝐻 (𝑞, 
  

  
 ,) + 

   

  
 = 0 ( (Hamilton-Jacobi Equation). 

This equation encapsulates the intricate dynamics of the 

system, providing a bridge between classical and 

quantum mechanics. Its solutions, often obtained 

through separation of variables, unlock the trajectories 

and evolution of dynamic systems with elegance and 

mathematical depth. 

In summary, the Classical Hamilton-Jacobi Equation, 

with its intricate derivations and complex 

representations, stands as a cornerstone in theoretical 

mechanics, shedding light on the nuanced dynamics of 

physical systems. 
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Theoretical Adaptations to the Financial Context 

The transition of the Hamilton-Jacobi equation from 

classical mechanics to finance involves intricate 

theoretical adaptations. In the financial realm, we 

consider a system where assets evolve over time, 

introducing state variables Xt to capture the financial 

dynamics. The adapted Hamiltonian H now 

encapsulates the instantaneous utility of an investor and 

is expressed as: 

(𝑋𝑡, 
  

   
 ,𝑡) = 

 

 
 (
  

   
 )2 + 𝑉(𝑋𝑡,𝑡), 

Where V(Xt,t) represents the value function associated 

with the financial system. This modification 

accommodates the stochastic nature of financial 

markets and the uncertainties faced by investors 

(Karatzas & Shreve, 1998). 

To delve deeper, we extend the action integral S to the 

financial domain, representing the difference between 

the discounted utility of wealth and the cost of 

uncertainty: 

𝑆[𝑋(𝑡),𝑡] = ∫
  

  
 (

  

   
 )dx𝑡 - 2 ∫   

  

  
  ( 

 

 
 (

  

   
 )2 + 

𝑉(𝑋𝑡,𝑡)𝑑𝑡, 

Where λt denotes the Lagrange multiplier associated 

with the investor's risk aversion. The financial 

Hamilton-Jacobi equation arises from this action, taking 

the form: 

𝐻 (𝑋𝑡, 
   

   
 ,) + 

   

  
 + 𝜆𝑡 ( 

 

 
 (
   

   
 )2 + 𝑉(𝑋𝑡,𝑡) = 0 

This equation reflects the optimization problem faced 

by investors, balancing the desire for high returns with 

the aversion to risk. The derivation integrates financial 

dynamics, risk aversion, and the utility of wealth, 

encapsulating the complexities of financial decision-

making. 

In summary, the theoretical adaptations of the 

Hamilton-Jacobi equation to the financial context 

involve introducing state variables, modifying the 

Hamiltonian, and formulating the action integral to 

reflect the dynamics of financial markets. 

Linking Dynamic Programming to Optimal Control 

in Finance 

In the intricate landscape of financial decision-making, 

the connection between dynamic programming and 

optimal control becomes a pivotal framework for 

optimizing strategies over time. We embark on a 

journey to link these two concepts, drawing from the 

foundations laid by notable works in mathematical 

finance. 

Consider a financial system where the state variables 

are denoted as Xt, representing the financial state at 

time t. The optimization objective involves maximizing 

the expected utility of wealth over a finite time horizon, 

incorporating the dynamic evolution of the system. We 

express the Hamiltonian H as: 

𝐻(𝑋𝑡, 
   

   
 ,𝑡) =

 

 
  (

  

   
 )2 + 𝑟(𝑋𝑡,𝑡)𝑉(𝑋𝑡,𝑡), 

Where V(Xt,t) denotes the value function, and r(Xt,t) 

represents the rate of return on wealth. This formulation 

encapsulates the key elements of financial dynamics 

(Øksendal, 2003). 

The dynamic programming equation takes the form: 

  

  
 + 𝑠{−𝐻(𝑋𝑡, 𝛼,𝑡)} = 0, 

Where α represents the control variable, and the 

supremum is taken over admissible control strategies. 

The optimal control strategy 𝛼∗ that maximizes this 

expression links dynamic programming to optimal 

control in finance. 

The derivation of the optimal control strategy involves 

solving the Hamilton-Jacobi-Bellman (HJB) equation: 

  

  
 + 𝑠{−𝐻(𝑋𝑡, 𝛼,𝑡)} = 0. 

This nonlinear partial differential equation characterizes 

the optimal value function V and the associated optimal 

control strategy (Fleming & Rishel, 1975). 

In summary, the linkage between dynamic 

programming and optimal control in finance is 

manifested through the Hamiltonian, the dynamic 

programming equation, and the solution to the HJB 
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equation. This connection provides a powerful 

mathematical framework for optimizing financial 

strategies over time. 

Financial Optimization: A Theoretical Perspective 

Defining Financial Optimization as a Mathematical 

Discipline 

In the realm of financial decision-making, the term 

"Financial Optimization" encompasses a mathematical 

discipline that seeks to identify the most efficient 

allocation of resources, considering various constraints 

and objectives. This section delves into the theoretical 

foundations and mathematical nuances that define 

financial optimization, drawing insights from seminal 

works in the field. 

Financial optimization involves the formulation and 

solution of mathematical models to optimize decision-

making processes in finance. At its core, it aims to 

maximize or minimize a certain objective function, 

subject to a set of constraints, reflecting the dynamic 

and uncertain nature of financial markets (Dixit & 

Pindyck, 1994). 

A foundational concept in financial optimization is the 

mathematical programming framework, which includes 

linear programming, quadratic programming, and 

nonlinear programming. These techniques provide a 

structured approach to formulate and solve optimization 

problems, making them amenable to rigorous 

mathematical analysis (Bertsekas & Tsitsiklis, 1996). 

Consider a generic financial optimization problem, 

where the decision variables are denoted as 𝑥,, the 

objective function to be optimized is 𝑓(𝑥), and 

constraints on these variables are represented by  𝑔𝑖(𝑥) 

≤ 0 and 𝑕𝑗(𝑥) = 0. . The optimization problem can be 

formulated as: 

Maximize (𝑥) Subject to 𝑔𝑖(𝑥) ≤ 0, 𝑕𝑗(𝑥) = 0. 

This mathematical representation allows for a 

systematic approach to solving complex financial 

decision problems, ranging from portfolio optimization 

to risk management. 

The significance of financial optimization is 

underscored by its application in addressing real-world 

challenges, such as portfolio construction and asset 

allocation. By mathematically formulating these 

problems and leveraging optimization techniques, 

financial practitioners can systematically arrive at 

optimal solutions that align with their investment 

objectives and constraints (Luenberger & Ye, 2008). 

In summary, financial optimization, as a mathematical 

discipline, provides a structured framework for making 

optimal decisions in the complex landscape of finance. 

The utilization of mathematical programming 

techniques and optimization algorithms forms the 

backbone of this discipline, contributing to the 

advancement of decision-making methodologies in the 

financial domain. 

The Role of Uncertainty and Dynamics in Financial 

Decision-Making 

In the intricate realm of financial decision-making, the 

incorporation of uncertainty and dynamics adds layers 

of complexity to mathematical models. We delve into 

the theoretical intricacies, drawing from foundational 

works to establish the role of uncertainty in the 

dynamic landscape of financial optimization. 

The financial system, characterized by evolving state 

variables Xt, encounters uncertainties arising from 

market fluctuations. Capturing this uncertainty, we 

introduce a stochastic process Wt, representing 

Brownian motion. The dynamics of wealth, influenced 

by both deterministic trends and random fluctuations, 

are expressed as a stochastic differential equation 

(Karatzas & Shreve, 1998): 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡,𝑡)𝑑𝑡 + 𝜎(𝑋𝑡,𝑡)𝑑𝑊𝑡, 

Where μ is the drift term representing the deterministic 

part, and σ is the volatility term capturing the random 

fluctuations? This formulation encapsulates the 

dynamic nature of financial markets. 

Uncertainty is further embedded through the 

introduction of an additional state variable, Yt, 

representing the uncertainty process. The coupled 
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system of stochastic differential equations for Xt and Yt 

governs the dynamics and uncertainty in financial 

decision-making: 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡, 𝑌𝑡,𝑡)𝑑𝑡 + 𝜎(𝑋𝑡, 𝑌𝑡,𝑡)𝑑𝑊𝑡, 

𝑑𝑌𝑡 = 𝛼(𝑋𝑡, 𝑌𝑡,𝑡)𝑑𝑡 + 𝛽(𝑋𝑡, 𝑌𝑡,𝑡)𝑑𝑊𝑡′, 

Where dWt and dWt′ are independent Brownian 

motions, capturing different sources of uncertainty. 

This stochastic differential equation framework 

provides a comprehensive representation of uncertainty 

and dynamics in financial decision-making, laying the 

groundwork for advanced mathematical modeling. 

Theoretical Foundations of the Hamilton-Jacobi-

Bellman Equation in Optimization 

The Hamilton-Jacobi-Bellman (HJB) equation serves as 

the keystone in optimizing financial decisions under 

uncertainty. Its theoretical foundations are deeply 

rooted in dynamic programming and optimal control 

theory. Let's navigate through the intricate derivations 

and establish the theoretical underpinnings of the HJB 

equation. 

Consider a financial system with state variables Xt

evolving over time. The objective is to maximize the 

expected utility of wealth over a finite time horizon, 

incorporating uncertainties. The Hamiltonian H is 

formulated as: 

𝐻 (𝑋𝑡, 
  

   
 ,) =  

 

 
 (
   

   
 )2 + 𝑟(𝑋𝑡 ,𝑡)𝑉(𝑋𝑡,𝑡), 

Where V(Xt,t) denotes the value function and r(Xt,t) 

represents the rate of return on wealth. 

The dynamic programming equation, derived from the 

principle of optimality, takes the form: 

∂t∂V+supα{−H(Xt,α,t)}=0, 

Where α is the control variable, and the supremum is 

taken over admissible control strategies. 

To delve into the theoretical foundations of the HJB 

equation, we invoke the Hamiltonian and formulate the 

HJB equation: 

  

  
 + 𝑠{−𝐻(𝑋𝑡, 𝛼,𝑡)} = 0 

This nonlinear partial differential equation characterizes 

the optimal value function V and the associated optimal 

control strategy, providing a rigorous foundation for 

financial optimization under uncertainty (Fleming & 

Rishel, 1975). 

The HJB equation connects optimal control, dynamic 

programming, and financial optimization, serving as a 

cornerstone for theoretical advancements in 

mathematical finance. 

Stochastic Control Theory and HJB Equation 

Incorporating Stochastic Control Theory into 

Financial Optimization 

In the sophisticated realm of financial optimization, the 

integration of stochastic control theory adds a layer of 

mathematical depth, allowing for a comprehensive 

treatment of uncertainties and their impact on decision-

making. Let's immerse ourselves in a highly equational 

and derivative-focused exploration of this integration. 

Consider a financial system with state variables Xt

evolving stochastically over time. The dynamics of the 

system are governed by stochastic differential 

equations, capturing both deterministic trends and 

random fluctuations: 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡,𝑡)𝑑𝑡 + 𝜎(𝑋𝑡,𝑡)𝑑𝑊𝑡 

Where μ represents the drift term, σ is the volatility 

term, and dWt denotes a Wiener process, capturing the 

stochastic nature of financial markets (Øksendal, 2003). 

The optimization objective is to maximize the expected 

utility of wealth over a finite time horizon. 

Incorporating stochastic control theory, the Hamiltonian 

H is formulated as: 

𝐻(𝑋𝑡, 
  

   
 , 𝛼,𝑡) =  

 

 
(
   

   
 )2 + 𝑟(𝑋𝑡, 𝛼,𝑡)𝑉(𝑋𝑡,𝑡) 

Where V(Xt,t) is the value function, α denotes the 

control variable, and r(Xt,α,t) represents the rate of 

return on wealth. 
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The dynamic programming equation, derived through 

the Hamilton-Jacobi-Bellman (HJB) equation, takes the 

form: 

  

  
 + 𝑠𝑢𝑝𝛼 {−(𝑋𝑡, 𝜕𝑉 𝜕𝑋𝑡 , 𝛼,𝑡)} = 0 

Differentiating with respect to the control variable α 

and leveraging the stochastic calculus framework, we 

derive the stochastic control equation: 

  

  
 + 

  

   
 𝜇(𝑋𝑡,𝑡) + 

 

 
 
   

    
 𝜎2(𝑋𝑡,𝑡) + 𝑠𝑢𝑝𝛼{−𝑟(𝑋𝑡, 

𝛼,𝑡)𝑉(𝑋𝑡,𝑡)} = 0. 

This highly equational representation captures the 

essence of incorporating stochastic control theory into 

financial optimization. The equation balances 

deterministic trends, stochastic fluctuations, and the 

optimization of the wealth utility function over time. 

Theoretical Elegance of Adapting Control Theory 

Concepts 

The adaptation of control theory concepts in financial 

optimization not only provides a powerful mathematical 

framework but also unveils a theoretical elegance in 

addressing the complexities of decision-making under 

uncertainty. Let's explore the theoretical underpinnings, 

emphasizing the elegance inherent in this adaptation. 

In the financial landscape, incorporating control theory 

involves optimizing strategies under uncertainty. The 

control variable, denoted as α, becomes a key player in 

steering the system toward optimal trajectories. The 

elegance lies in the formulation of the Hamiltonian H, 

which encapsulates the system dynamics and the cost 

function associated with control. The elegance unfolds 

in the dynamic programming equation, where the 

optimization process involves the supremum over 

control strategies: 

  

  
 + 𝑠𝑢𝑝𝛼 {−(𝑋𝑡 , 

   

   
 , 𝛼,𝑡)} = 0. 

 

This equation harmonizes deterministic dynamics, 

stochastic influences, and the optimization of wealth 

utility. The theoretical elegance is further manifested in 

the derivation of the stochastic control equation, 

offering a sophisticated yet concise representation of 

optimal decision-making: 

  

  
 + 

  

   
 𝜇(𝑋𝑡,𝑡) + 

 

 
(
   

   
 )2 + 𝜎2(𝑋𝑡,,𝑡) + 𝑠𝑢𝑝𝛼{−𝑟(𝑋𝑡, 

𝛼,𝑡)𝑉(𝑋𝑡,𝑡)} = 0. 

The adaptation of control theory concepts not only 

enhances mathematical rigor but also provides an 

elegant bridge between deterministic and stochastic 

elements, harmonizing them in the pursuit of optimal 

financial decisions. 

Derivation and Practical Implications of the Hjb 

Equation 

Theoretical Derivation of the Hamilton-Jacobi-

Bellman Equation 

The Hamilton-Jacobi-Bellman (HJB) equation is 

derived from the principles of stochastic control and 

dynamic programming, providing a comprehensive 

framework for optimal decision-making in the face of 

uncertainty. The theoretical derivation involves intricate 

mathematical manipulations, encapsulating the essence 

of financial optimization. Let's delve into the 

complexities purely through equations. 

Starting with the stochastic control equation: 

  

  
 + 

  

   
 𝜇(𝑋𝑡,𝑡) + 

 

 

   

   
𝜎2(𝑋𝑡,,𝑡) + 𝑠𝑢𝑝𝛼{−𝑟(𝑋𝑡, 

𝛼,𝑡)𝑉(𝑋𝑡,𝑡)} = 0. 

Where: 

 V is the value function, 

 Xt represents the state variable evolving 

stochastically, 

 μ is the drift term, 

 σ is the volatility term, 

 α denotes the control variable, and 

 r(Xt,α,t) is the rate of return on wealth. 

To streamline the notation, let L denote the 

infinitesimal generator of the process Xt defined as: 

  = (𝑋𝑡,) 
 

   
 + 

 

 
 𝜎2 (𝑋𝑡,𝑡) 

  

     
 . 

The stochastic control equation becomes: 
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 +  𝑉 + 𝑠𝑢{−𝑟(𝑋𝑡, 𝛼,𝑡)𝑉(𝑋𝑡,𝑡)} = 0. 

Applying the Hamiltonian H definition: 

𝐻(𝑋𝑡, 
  

   
 , 𝛼,𝑡) = 

 

 
 (
  

    
)2 + 𝑟(𝑋𝑡, 𝛼,𝑡)𝑉(𝑋𝑡,𝑡), 

We can rewrite the supremum term in terms of H: 

𝑠𝑢𝑝𝛼{−𝑟(𝑋𝑡, 𝛼,𝑡)𝑉(𝑋𝑡,𝑡)} = −𝑖𝑛𝑓𝛼{𝐻(𝑋𝑡, 
   

   
 , 𝛼,𝑡)}. 

Substituting this back into the stochastic control 

equation, we arrive at the HJB equation: 

  

  
 +  𝑉 − 𝑖𝑛𝑓𝛼 {(𝑋𝑡, 

   

   
 , 𝛼,𝑡)} = 0 

The elegance of the HJB equation lies in its ability to 

capture the optimal decision-making process under 

uncertainty, combining stochastic dynamics, control 

theory, and dynamic programming principles in a 

single, complex equation. 

Bridging Theoretical Foundations to Optimal 

Investment Strategies 

The transition from theoretical foundations, particularly 

the Hamilton-Jacobi-Bellman (HJB) equation, to 

practical implementation involves the development of 

optimal investment strategies. This section aims to 

bridge the complex theoretical framework with 

actionable strategies, emphasizing the application of the 

HJB equation. Let's delineate this journey in equations, 

acknowledging the relevant references. 

Starting with the HJB equation: 

  

  
 +  𝑉 − 𝑖𝑛𝑓𝛼 {𝐻 (𝑋𝑡, 

  

    
, 𝛼,𝑡)} = 0 

Where L is the infinitesimal generator, V is the value 

function, and H is the Hamiltonian. 

The optimal control strategy is 𝛼∗ obtained by 

minimizing the Hamiltonian: 

𝛼∗ arg 𝑚𝑖𝑛𝛼 {𝐻 (𝑋𝑡, 
  

    
, 𝛼,𝑡)}. 

This leads to a system of stochastic differential 

equations defining the optimal investment strategy: 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡, 𝛼∗ ,𝑡)𝑑𝑡 + 𝜎(𝑋𝑡,  𝛼∗ ,𝑡)𝑑𝑊𝑡, 

Where μ and σ are the drift and volatility terms, 

respectively. 

The practical implementation of optimal investment 

strategies involves solving these equations and 

adjusting the control variable α over time based on 

market conditions. The transition probability density 

function associated with the optimal control strategy 

can be derived from the Fokker-Planck equation: 

  

  
 = − 

 

  
 [𝜇(𝑥, 𝛼,𝑡)𝑝] +  

 

 
𝜕 2 𝜕𝑋2 [𝜎 2 (𝑥, 𝛼,𝑡)𝑝]. 

This equation provides the evolution of the probability 

distribution of the state variable Xt under the optimal 

strategy. 

Bridging the theoretical foundations to practical 

investment strategies involves numerically solving 

these equations, often employing advanced 

computational methods such as finite difference 

schemes or Monte Carlo simulations (Kloeden & 

Platen, 1992; Glasserman, 2003). 

The theoretical elegance encapsulated in the HJB 

equation becomes actionable through the derived 

optimal control strategy and the associated evolution of 

the probability distribution, providing a robust 

framework for implementing optimal investment 

decisions under uncertainty. 

Nonlinearities and Theoretical Challenges in Solving 

HJB Equation 

Addressing nonlinearities within the Hamilton-Jacobi-

Bellman (HJB) equation introduces theoretical 

challenges that necessitate advanced mathematical 

techniques for solution. This section delves into the 

complexities of nonlinearities, focusing on the 

intricacies of solving the HJB equation. The 

formulation will be presented purely in equations, 

emphasizing the theoretical challenges involved. 

The HJB equation with nonlinearities takes the form: 

  

  
 +  𝑉 − 𝑖𝑛𝑓𝛼 {𝐻 (𝑋𝑡, 

  

   
 , 𝛼,𝑡)} = 0 
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The nonlinearities arise from the dependence of the 

Hamiltonian H on the control variable α, introducing 

challenges in finding the optimal control strategy  

The nonlinear HJB equation requires the solution of the 

minimization problem: 

𝛼 ∗ arg 𝑚𝑖𝑛𝛼 {𝐻 (𝑋𝑡, 
  

   
 , 𝛼,𝑡)}. 

Which is inherently challenging due to the nonlinearity 

of the objective function. 

One approach to address these challenges is through 

iterative numerical methods. For instance, the 

Hamilton-Jacobi-Isaacs (HJI) scheme involves 

discretizing the state space and iteratively updating the 

value function V until convergence is achieved. The 

nonlinearities in the control problem make this iterative 

process computationally demanding (Crandall et al., 

1983). 

The viscosity solution approach offers another avenue 

for handling nonlinearities. The notion of viscosity 

solutions allows for a broader class of solutions, 

accommodating the challenges posed by the 

nonlinearity of the HJB equation (Crandall & Lions, 

1983). 

Moreover, addressing nonlinearities may involve 

employing advanced mathematical tools such as convex 

analysis and optimal transport theory, providing 

insights into the structure of the HJB equation and 

facilitating the development of effective numerical 

algorithms (Caffarelli & Souganidis, 2008). 

The theoretical challenges in solving the nonlinear HJB 

equation highlight the need for a nuanced 

understanding of nonlinear control problems and the 

application of advanced mathematical techniques for 

robust solutions. 
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